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Abstract 

We study the sum rule for the mass squared of the N=l four dimensional 

effective supersymmetric theory whose KZhler potential is of the general 

form that appears in compactified superstrings. We take full account of 

the non-minimal nature of the models. 
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Superstring theories which are tachyon and ghost free can be constructed in 

non-compact ten dimensional space time. When one imposes the extra condition 

that the resulting theory be a fully consistent quantum theory, i.e. that it be 

anomaly free, one Snds the extraordinary result that the only allowed gauge groups 

are eitherill SO(32) or E(8) @ E(8)‘. This opens up the possibility for a consistent 

unification of gravity with the remaining three forces in a gauge theory where the 

gauge group is no longer arbitrary and one can ask questions that range from the 

physics of quantum gravity to the physics of, say, CP violation. 

To obtain phenomenology from this type of theories one follows a twostep 

scenario[a. First we truncate the infInite super-string spectrum and consider only 

the zero mass modes with spin less than 5/2, so that we have a form of N=l su- 

pergravity in ten dimensions. Secondly, we compactify on an appropriately chosen 

six-dimensional manifold, consistent with the equations of motion. Because of the 

requirement of N=l supersymmetry in four dimensions and the necessity for chi- 

ral fermions in the theory, the gauge group E(8) @ E(8)’ is reduced to the group 

E(6) 8 E(8)‘. 

In this way, we are led to an N=l supergravity theory in four dimensions, de- 

scribed by a Kiihler potential of the form 

G = ah+5 + 5”) + p h(T + T* - +#‘l’/M) - bi lwt2 (1) 

where LZ = 1, p = 3,~ is unspecified, M is Planck’s mass and W is the superpotential 

which in principle can be a function of S, T, and the matter fields, 4. Here, S and 

T are gauge singlets, while 4 transform according to the 27 and 27’ of E(6). Matter 

multiplets are singlets under the hidden E(S)‘group, and the only nonsinglet fields 

under E(8)’ are its gauge supermultiplet in the adioint representation. In addition, 

the kinetic energy term for both the visible and hidden gauge sectors is modulated 

by the factor 

Q(S) = s (2) 

Supersymmetry breaking is supposed[a to take place in the hidden (E(8)‘) sector 

via gaugino condensation. This is assumed to occur at a scale much larger than 

1Oro GeV where the corresponding coupling constant goes through its critical value. 
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The gravitino mass, rns,r, that is so generated remains, however, undetermined at 

the tree level. 

Of paramount importance for the study of a system with broken supersymmetry 

is M analysis of the supersymmetric sum rule14,5] for STr Ms. The sum rule gives 

an indication of how the supersymmetry breaking manifests itself in the physics of 

the components and gives us a handle on the possible phenomenology of the model. 

Recently there has been a flurry of activity@] on this subject, pointing out the 

heretofore unsuspected quadratic divergence in the theory. We should remark that 

all the previous calculations in ref.161 neglected the curved character of the field 

manifold and more or less resorted to the conventional strategy of expanding about 

the vacuum. Thii procedure does not respect the original global symmetries of the 

Lagrangianl’ll . 

In this paper, we explore in detail the supersymmetric sum rule for the scenarios 

of the type described by eqn(1) and eqn(2), taking into account the full curved 

and non-minimal field theoretic structure of the model. This class of theories is 

not power-counting renormalisable, even though the component Lagrangisn has at 

most two space-time derivatives of the bosonic fields and one space-time derivative 

of the fermionic components. With a kinetic energy for the boson fields of the form 

where gij is the K&ler metric, there is no “free particle” propagation and standard 

perturbation theory is not valid. However, by exploiting the Kiihler nature of the 

field manifold and its associated gauge invariance, one can find a (normal) gauge 

where the metric is locally Kronecker and therefore do standard perturbation theory 

in that gauge. At the end of the calculation’dne;may m-write the local geometrical 

quantities in terms of their tensor counterparts such as the curvature tensor, the 

Ricci tensor, etc, so that the final result is valid for any parametrisation of the field 

manifold. 

Following these methods151, one finds the following supertrace sum rule for a 

general matter system coupled to N=l supergravity in four dimensions 
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J/2 
J&(-1)2J(2J + 1)Mj = 

-2{d”(Te)i + RiTiif’ - (IV - l)[&/r - ~c’(Q + aabd”$] 

+d”(Z’a)jZjl? + Tr[@(Q + G)-‘Qj(Q + iJp]fJj 

- Tr[$(Q + ~-‘](T.)jz&dd”} (3) 

where R: is the Ricci tensor of the field manifold, T’ is the contracted connection, 

n is the gravitational constant and d” are the appropriate D-terms. The Ricci 

tensor and the contracted connection are respectively given in an arbitrary Kiihler 

manifold with metric g by 

RaF = &,+lndetg 

and 

I’= = a,lndetg 

We are interested in evaluating eqn(3) for the theory described by eqn(1) and 

eqn(2). With respect to the ground state of the theory, which is where we need to 

evaluate the STrMz, all the D-term contributions vanish. To obtain the contribution 

due to the other terms we calculate the metric P of the field manifold and tind 

(S_S-ts*;~~~~+~;i~~-r]~]*/M) - 

L 

-z&e 

g=M’G,p= 0 s= -if& &gf 

0 ezfp ~(6~+zz.a.& 

which is non-singular and has the inverse 

-s’ .r&P 0 0 
g-’ G M-ZGd = 0 -- p2$ -$g 

0 -&A A?.-p 
PM= h’.f B 

(4) 

(5) 
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It follows from this that 

det g-r = 

where n indicates the total number of chiral fields in 4. For example, if one had 

three 27’s of E(6), then n = 81. 

The components of the Ricci tensor turn out to be given by 

(7) 

R,,sB = 7% ( 6; + 

and are zero otherwise. This, when combined with eqn(4), shows that the field 

manifold is the direct product of two Einstein manifolds: one describing the S 

sector and the other the (T - 4) sector. 

Although unnecessary for our present purposes, we also display here the six 

components of the contracted connection which are given by 

and 

(12) 
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The last equation is a consequence of the cancellation between the derivatives of 

det(g-‘) and is due to the geometric properties of this particular field manifold. 

Eqn (10-12) imply that for the class of K&l-&r potentials considered here, all the 

contributions to STrMr coming from the contracted connection vanish identically 

even if some of the d” were not zero. 

We also need the auxiliary fields which are calculated fromf51 

G,BT- f ms/zG, = 0 (13) 

although for our purposes, it is only necessary to calculate explicitly fS, which turns 

out to be 

Here n-~/r is the gravitino mass given by 

m3j2 = M(e-G’2) 

To obtain the total contribution of the Ricci tensor to Eq.(3), it is convenient 

to take advantage of the “doubly Einstein” character of the manifold and compute 

Rapf”jF separating the contributions as those due to the S and (T - 4) submani- 

folds. One gets respectively 

R,,pfnT’lg = +2m$ 1 - E$ ’ 
1 I 

and 

-- 

(14) 

(15) 
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When we take vacuum expectation values, and set VEV of 4 equal to zero, eq.(15) 

becomes 

R.p/VFl, ~ Fw, a 
I I - = (n + 2) 1 - p w m;,, 

(16) 

The final contribution to be computed is the one due to the non-minimal gauge 

kinetic modulator, Eq.(2). Thii gives 

Tr [3(Q + Q))-‘Qj(Q + Q-l] Tii,j = 

+ rn:,s 1 - E$ z dim(Adj) 
I ^ I 

07) 

where dimCAd j ) is to be understood as the sum over the dimension of the adjoint 

representation of each of the gauge factor groups whose gauge kinetic energy term 

is modulated by eq (2), i.e. over both the visible and the hidden gauge sectors. 

Putting all this together and evaluating at the vacuum, we finally get 

I 

STrMz = +2m$ N-l-(n+2) l-gg 
I I 

-(Z+dim(Adj)) 1-z;’ 1 II (18) 

Here N is the total number of chiral multiplets in the model and is equal to n + 2. 

It is well known that in the standard superstring scenario where a = 1, and 

p = 3, the STrMr sum rule does not vanish but~reduces to the standard result[6] 

saMz = -2m$ 

Here we have ss usual chosen the VEV of S so that Gs vanishes, resulting in a a 

zero cosmological constant. The standard theory thus has a quadratic divergence 

at the one loop level that cannot be avoided. In this context our calculation does 

not offer anything new except that it confirms the previous result, obtained with 

different methods. 
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It is interesting to remark however that if one generalizes the superpotential W 

to include a dependence on both S and T, then our sum rule (eq.18) suggests a 

possibility of det erminiig the VEV of S and 2’ such that both STrw ss well as the 

cosmological constant w. With this generalized W, the cosmological constant 

is given by the VEV of 

For the superstring values of a and p, the resulting simultaneous equations that 

follow from our conditions possess a solution only if 

n > 3(2 + dim(Adj)) - 1 

which constrains the number of matter multiplets present in the theory. For the 

standard scenario of E(6) @ E(8)‘, this implies that there be at least thirty-seven 

27’s in the theory. By relaxing the values of Q and p away from 1 and 3, one may 

entertain scenarios where the number of 27’s is smaller and still have a vanishing 

STrW and cosmological constant, so long ss 

Q < ,z+didAdj) 

n+l 

Lastly we remark that conventional scenarios have resulted in a negative value 

for STrMz, which not only has led to a quadratic divergence of the theory, but has 

the wrong sign for the effective potential and has a destabilizing influence on the 

theory181. Our result (eq.18) offers the alternative #of, if not a vanishing quadratic 

divergence BS discussed above, at least a positive definite (though divergent) effective 

potential with at the same time a zero cosmological constant. The above constraint 

on the least number of matter multiplets continues to hold true in this case. 
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